3.5.8 \(\int \frac {1}{x \sqrt {a+b x^3}} \, dx\) [408]

Optimal. Leaf size=27 \[ -\frac {2 \tanh ^{-1}\left (\frac {\sqrt {a+b x^3}}{\sqrt {a}}\right )}{3 \sqrt {a}} \]

[Out]

-2/3*arctanh((b*x^3+a)^(1/2)/a^(1/2))/a^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 27, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {272, 65, 214} \begin {gather*} -\frac {2 \tanh ^{-1}\left (\frac {\sqrt {a+b x^3}}{\sqrt {a}}\right )}{3 \sqrt {a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x*Sqrt[a + b*x^3]),x]

[Out]

(-2*ArcTanh[Sqrt[a + b*x^3]/Sqrt[a]])/(3*Sqrt[a])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {1}{x \sqrt {a+b x^3}} \, dx &=\frac {1}{3} \text {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,x^3\right )\\ &=\frac {2 \text {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b x^3}\right )}{3 b}\\ &=-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {a+b x^3}}{\sqrt {a}}\right )}{3 \sqrt {a}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 27, normalized size = 1.00 \begin {gather*} -\frac {2 \tanh ^{-1}\left (\frac {\sqrt {a+b x^3}}{\sqrt {a}}\right )}{3 \sqrt {a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x*Sqrt[a + b*x^3]),x]

[Out]

(-2*ArcTanh[Sqrt[a + b*x^3]/Sqrt[a]])/(3*Sqrt[a])

________________________________________________________________________________________

Maple [A]
time = 0.12, size = 20, normalized size = 0.74

method result size
default \(-\frac {2 \arctanh \left (\frac {\sqrt {b \,x^{3}+a}}{\sqrt {a}}\right )}{3 \sqrt {a}}\) \(20\)
elliptic \(-\frac {2 \arctanh \left (\frac {\sqrt {b \,x^{3}+a}}{\sqrt {a}}\right )}{3 \sqrt {a}}\) \(20\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(b*x^3+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/3*arctanh((b*x^3+a)^(1/2)/a^(1/2))/a^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.50, size = 37, normalized size = 1.37 \begin {gather*} \frac {\log \left (\frac {\sqrt {b x^{3} + a} - \sqrt {a}}{\sqrt {b x^{3} + a} + \sqrt {a}}\right )}{3 \, \sqrt {a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^3+a)^(1/2),x, algorithm="maxima")

[Out]

1/3*log((sqrt(b*x^3 + a) - sqrt(a))/(sqrt(b*x^3 + a) + sqrt(a)))/sqrt(a)

________________________________________________________________________________________

Fricas [A]
time = 0.36, size = 63, normalized size = 2.33 \begin {gather*} \left [\frac {\log \left (\frac {b x^{3} - 2 \, \sqrt {b x^{3} + a} \sqrt {a} + 2 \, a}{x^{3}}\right )}{3 \, \sqrt {a}}, \frac {2 \, \sqrt {-a} \arctan \left (\frac {\sqrt {b x^{3} + a} \sqrt {-a}}{a}\right )}{3 \, a}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^3+a)^(1/2),x, algorithm="fricas")

[Out]

[1/3*log((b*x^3 - 2*sqrt(b*x^3 + a)*sqrt(a) + 2*a)/x^3)/sqrt(a), 2/3*sqrt(-a)*arctan(sqrt(b*x^3 + a)*sqrt(-a)/
a)/a]

________________________________________________________________________________________

Sympy [A]
time = 0.47, size = 26, normalized size = 0.96 \begin {gather*} - \frac {2 \operatorname {asinh}{\left (\frac {\sqrt {a}}{\sqrt {b} x^{\frac {3}{2}}} \right )}}{3 \sqrt {a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x**3+a)**(1/2),x)

[Out]

-2*asinh(sqrt(a)/(sqrt(b)*x**(3/2)))/(3*sqrt(a))

________________________________________________________________________________________

Giac [A]
time = 0.96, size = 23, normalized size = 0.85 \begin {gather*} \frac {2 \, \arctan \left (\frac {\sqrt {b x^{3} + a}}{\sqrt {-a}}\right )}{3 \, \sqrt {-a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^3+a)^(1/2),x, algorithm="giac")

[Out]

2/3*arctan(sqrt(b*x^3 + a)/sqrt(-a))/sqrt(-a)

________________________________________________________________________________________

Mupad [B]
time = 1.23, size = 40, normalized size = 1.48 \begin {gather*} \frac {\ln \left (\frac {{\left (\sqrt {b\,x^3+a}-\sqrt {a}\right )}^3\,\left (\sqrt {b\,x^3+a}+\sqrt {a}\right )}{x^6}\right )}{3\,\sqrt {a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*(a + b*x^3)^(1/2)),x)

[Out]

log((((a + b*x^3)^(1/2) - a^(1/2))^3*((a + b*x^3)^(1/2) + a^(1/2)))/x^6)/(3*a^(1/2))

________________________________________________________________________________________